#include <fstream>
int fit(){
TGraph *gr = new TGraph("data1.txt");
double pi=3.14159265;
TF1 *f1 = new TF1("f1","[0]*sin([1]*pi*x)*exp([2]*x)+[3]",0,10);
f1->SetParameter(0,1); // 第零个参数的参考值
f1->SetParameter(1,1);
f1->SetParameter(2,-1);
f1->SetParameter(3,0.5);
// be equal in value with below
// fi->SetParameters(1,1,-1,0.5);
gr->Fit("f1");
gr->Draw();
}
root会打印出其拟合参数的精确值:
[zhangzh@node01 test]$ rl fit.c
root [0]
Processing fit.c...
****************************************
Minimizer is Minuit / Migrad
Chi2 = 0.1458
NDf = 96
Edm = 3.61433e-08
NCalls = 123
p0 = 1.00186 +/- 0.0254347
p1 = 1.30098 +/- 0.00369848
p2 = -0.482759 +/- 0.0172724
p3 = 0.498504 +/- 0.00393919
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
(int) 0
拟合误差通常以各种统计指标来表示,比如残差平方和(residual sum of squares)、平均绝对误差(mean absolute error)、均方根误差(root mean square error)等。
E.g. 拟合误差棒和拟合误差带
#include "TGraphErrors.h"
#include "TGraph2DErrors.h"
#include "TCanvas.h"
#include "TF2.h"
#include "TH1.h"
#include "TVirtualFitter.h"
#include "TRandom.h"
void ConfidenceIntervals()
{
TCanvas *myc = new TCanvas("myc","Confidence intervals on the fitted function",1000, 500);
myc->Divide(3,1);
//### 1. A graph
//Create and fill a graph
int ngr = 100;
TGraph *gr = new TGraph(ngr);
gr->SetName("GraphNoError");
double x, y;
int i;
for (i=0; i<ngr; i++){
x = gRandom->Uniform(-1, 1);
y = -1 + 2*x + gRandom->Gaus(0, 1);
gr->SetPoint(i, x, y);
}
//Create the fitting function
TF1 *fpol = new TF1("fpol", "pol1", -1, 1);
fpol->SetLineWidth(2);
gr->Fit(fpol, "Q");
/*Create a TGraphErrors to hold the confidence intervals*/
TGraphErrors *grint = new TGraphErrors(ngr);
grint->SetTitle("Fitted line with .95 conf. band");
for (i=0; i<ngr; i++)
grint->SetPoint(i, gr->GetX()[i], 0);
/*Compute the confidence intervals at the x points of the created graph*/
(TVirtualFitter::GetFitter())->GetConfidenceIntervals(grint);
//Now the "grint" graph contains function values as its y-coordinates
//and confidence intervals as the errors on these coordinates
//Draw the graph, the function and the confidence intervals
myc->cd(1);
grint->SetLineColor(kRed);
grint->Draw("ap");
gr->SetMarkerStyle(5);
gr->SetMarkerSize(0.7);
gr->Draw("psame");
//### 2. A histogram
myc->cd(2);
//Create, fill and fit a histogram
int nh=5000;
TH1D *h = new TH1D("h",
"Fitted Gaussian with .95 conf.band", 100, -3, 3);
h->FillRandom("gaus", nh);
TF1 *f = new TF1("fgaus", "gaus", -3, 3);
f->SetLineWidth(2);
h->Fit(f, "Q");
h->Draw();
/*Create a histogram to hold the confidence intervals*/
TH1D *hint = new TH1D("hint","Fitted Gaussian with .95 conf.band", 100, -3, 3);
(TVirtualFitter::GetFitter())->GetConfidenceIntervals(hint,0.68);
//Now the "hint" histogram has the fitted function values as the
//bin contents and the confidence intervals as bin errors
hint->SetStats(false);
hint->SetFillColor(2);
hint->Draw("e3 same");
//### 3. A 2d graph
//Create and fill the graph
int ngr2 = 100;
double z, rnd, e=0.3;
TGraph2D *gr2 = new TGraph2D(ngr2);
gr2->SetName("Graph2DNoError");
TF2 *f2 = new TF2("f2","1000*(([0]*sin(x)/x)*([1]*sin(y)/y))+250",-6,6,-6,6);
f2->SetParameters(1,1);
for (i=0; i<ngr2; i++){
f2->GetRandom2(x,y);
// Generate a random number in [-e,e]
rnd = 2*gRandom->Rndm()*e-e;
z = f2->Eval(x,y)*(1+rnd);
gr2->SetPoint(i,x,y,z);
}
//Create a graph with errors to store the intervals
TGraph2DErrors *grint2 = new TGraph2DErrors(ngr2);
for (i=0; i<ngr2; i++)
grint2->SetPoint(i, gr2->GetX()[i], gr2->GetY()[i], 0);
//Fit the graph
f2->SetParameters(0.5,1.5);
gr2->Fit(f2, "Q");
/*Compute the confidence intervals*/
(TVirtualFitter::GetFitter())->GetConfidenceIntervals(grint2);
//Now the "grint2" graph contains function values as z-coordinates
//and confidence intervals as their errors
//draw
myc->cd(3);
f2->SetNpx(30);
f2->SetNpy(30);
f2->SetFillColor(kBlue);
f2->Draw("surf4");
grint2->SetNpx(20);
grint2->SetNpy(20);
grint2->SetMarkerStyle(24);
grint2->SetMarkerSize(0.7);
grint2->SetMarkerColor(kRed);
grint2->SetLineColor(kRed);
grint2->Draw("E0 same");
grint2->SetTitle("Fitted 2d function with .95 error bars");
myc->cd();
}
拟合框
设置直方图拟合框TStyle::SetOptFit(pcev)。
p = 1;打印概率
c = 1; 打印卡方/自由度数
e = 1; 打印误差(如果 e = 1,v 必须为 1)
v = 1;打印参数名称/值
By default, for each bin, the sum of weights is computed at fill time. You can also call TH1::Sumw2() to force the storage and computation of the sum of the square of weights per bin. If Sumw2() has been called, the error per bin is computed as the sqrt(sum of squares of weights). Otherwise, the error is set equal to the `sqrt(bin content).
To return the error for a given bin number, use:
double error = h->GetBinError(bin);
Empty bins are excluded in the fit when using the Chi-square fit method. When fitting an histogram representing counts (that is with Poisson statistics) it is recommended to use the Log-Likelihood method (option L or WL), particularly in case of low statistics.
参数返回
// TFitResultPtr contains only the fit status.
int fitStatus = hist->Fit(myFunction);
// TFitResultPtr contains the TFitResult.
TFitResultPtr r = hist->Fit(myFunction,"S");
// Access the covariance matrix.
TMatrixDSym cov = r->GetCovarianceMatrix();
// Retrieve the fit chi2.
double chi2 = r->Chi2();
// Retrieve the value for the parameter 0.
double par0 = r->Parameter(0);
// Retrieve the error for the parameter 0.
double err0 = r->ParError(0);
// Print the full information of the fit including covariance matrix.
r->Print("V");
// Store the result in a ROOT file.
r->Write();